Miguel A. Hernán
La ausencia de confusión residual es la condición fundamental para la inferencia causal a partir de datos observacionales. Incluso cuando esta condición se cumple y los modelos están correctamente especificados, las estimaciones de los métodos estadísticos tradicionales pueden no tener una interpretación causal si existen confusores cambiantes que están afectados por la exposición. Los métodos «causales», como los modelos estructurales marginales y los modelos estructurales anidados, evitan este problema.
The absence of unmeasured confounding is the fundamental condition for causal inference from observational data. Even when this condition holds and the models are correctly specified, estimates from standard methods may not have a causal interpretation if there are time-dependent confounders that are affected by prior exposure. «Causal» methods, such as marginal structural models and structural nested models, avoid this problem.