B
uscar
R
evistas
T
esis
Acceso usuarios
Acceso de usuarios registrados
Identificarse
¿Olvidó su contraseña?
¿Es nuevo?
Regístrese
Ventajas de registrarse
Ayuda
Ir al conteni
d
o
Lactato
:
de inideseable a valioso metabolito. El papel de la producción de lactato en la regulación de la excitabilidad durante altas demandas de potencia en las fibras musculares
Autores:
Juan Ribas
Localización:
Archivos de medicina del deporte: revista de la Federación Española de Medicina del Deporte y de la Confederación Iberoamericana de Medicina del Deporte
,
ISSN
0212-8799,
Vol. 27, Nº. 137, 2010
,
págs.
211-230
Idioma:
español
Enlaces
Texto completo (
pdf
)
Dialnet Métricas
:
2
Citas
Referencias bibliográficas
González-Badillo JJ, Ribas Serna J. Bases de la programación del entrenamiento de fuerza. Barcelona: INDE ed., 2002.
Holten CH, Muller A, Rehbinder D. Lactic Acid: Property and Chemistry of Lactic Acid and Derivatives. Germany: Verlag Chemie, 1971.
Raju TN. The Nobel Chronicles. 1922: Archilbald Vivian Hill (1886-1977), Otto Fritz Meyerfhoff (1884-1951). Lancet 1998; 352: 1396.
Shampo MA, Kyle RA. Otto Meyerhoff-Nobel Prize for studies of muscle metabolism. Mayo Clin Proc 1999; 74: 67.
Margaria R, Edwards HT, Dill DB. The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular...
Sahlin K, Harris RC, Nylind B, Hultman E. Lactate content and pH in muscle samples obtained after dynamic exercise. Pflügers Arch 1976; 367:...
Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul IntegrComp Physiol 2004; 287: R502-R516.
Busa WB, Nuccitelli R. Metabolic regulation via intracellular pH. Am J Physiol Regul Integr Comp Physiol 1984; 246: R409-R438.
Dennis SC, Gevers W, Opie LH. Protons in ischemia: where do they come from; where do they go to? J Mol Cell Cardiol 1991; 23: 1077-1086
Tafaletti JG. Blood lactate: biochemistry, laboratory methods and clinical interpretation. CRC Crit Rev Clin Lab Sci 1991; 28: 253-268
ll) Wilkie DR. Generation of protons by metabolic processes other than glycolysis in muscle cells: a critical view. J Mol Cell Cardiol 1979;...
Zilva JF. The origin of the acidosis in hyperlac-tataemia. Ann Clin Biochem 1978; 15: 40-43
Gevers W. Generation of protons by metabolic processes in heart cells. J Mol Cell Cardiol 1977; 9: 867-874
Gevers W. Generation of protons by metabolic processes other than glycolysis in muscle cells: a critical view [letter to the editor]. J Mol...
Hochachka PW, Mommsen TP. Protons and anaerobiosis. Science 1933; 219: 1391-1397
Hale T. History of developments in sport and exercise physiology: A.V. Hill, maximal oxygen uptake, and oxygen debt. J Sport Sci 2008; 26(4):...
Wasserman K, Mcllroy MB. Detecting the threshold of anerobic metabolism in cardiac patients during exercise. Am J Cardiology 1964; 14: 844-852
Wasserman K, Whipp BJ, Koyal SN, Beaver WL. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 1973; 35: 236-243
Wasserman K. Misconceptions and missed perceptions of the anaerobic threshold. J appl Physiol 1983; 54: 853-854
Wasserman K, Koike A. Is the anaerobic threshold truly anaerobic? Chest 1992; 101(5): 211s-218s.
Carlson LA, Pernow B. Studies on the peripheral circulation and metabolism in man. I. Oxygen utilization and lactate-pyruvate formation in...
Carlson LA, Pernow B. Studies on the peripheral circulation and metabolism in man. II. Oxygen utilization and lactate-pyruvate formation in...
Jöbsis FF, Stainsby WN. Oxidation of NADH during contractions of circulated mammalian skeletal muscle. Respir. Physiol. 1968; 4: 292-300.
Gayeski TE, Honig CR. 02 gradients from sarcolemma to cell interior in red muscle at maximal V02. Am J Physiol 1986; 251(4): H789-799.
Connett RT, Gayeski TEJ, Honig CR. Minimum intracellular P02 for maximum cytochrome turnover in red muscle in situ Am. J. Physiol. Heart Circ....
Connett RT, Gayeski TEJ, Honig CR. Lactate efflux is unrelated to intracellular P02 in a working red muscle in situ.. J Appl Physiol 1986;...
Richardson RS, Noyszewski EA, Leigh JS, Wagner PD. Lactate efflux from exercising human skeletal muscle: role of intracellular P02. J. Appl....
Kemper WF, Lindstedt SL, Hartzler LK, Hicks JW, Conley KE. Shaking up glycolysis: Sustained, high lactate flux during aerobic rattling. Proc....
van Hall G, Calbet JAL, Søndergaard H, Saltin B. The re-establishment of the normal blood lactate response to exercise in humans after prolonged...
Brooks GA, Gladden LB. The metabolic systems: anaerobic metabolism (glycolitic and phosphagen). En: Tipton CM (ed). Exercise Physiology. People...
Gladden LB. Lactic acid: new roles in a new millennium. Proc Natl Acad Sci, 2001; 98: 395-397
Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol 2001; 558(1): 5-30.
Boning D, Maassen N. Point:Counterpoint: Lactic acid is/is not the only physicochemical contributor to the acidosis of exercise. J Appl Physiol...
Brooks GA, Fahey TD. Exercise physiology. New York: Macmillan Publishing Ed. 1985.
Krustrup P, Ferguson RA, Kjaer M, Bangsbo J. ATP and heat production in human skeletal muscle during dynamic exercise: higher efficiency of...
Sahlin K, Tonkonogi M, Soderlund K. Energy supply and muscle fatigue in humans. Acta Physiol Scand 1998; 162: 261-266
Sahlin K. Metabolic changes limiting muscle performance. En: Saltin B (ed). Biochemistry of Exercise. Champaign, IL: Human Kinetics 1986;...
Gladden LB. Lactate transport and exchange during exercise. En: Rowell LB, Shepherd JT (ed). Handbook of Physiology. New York: Oxford University...
Nielsen OB, de Paoli F, Overgaard K. Protective effects of lactic acid on force production in rat skeletal muscle. J Physiol 2001; 536(1):...
Pedersen TH, Calusen T, Nielsen OB. Loss of force induced by high extracellular [K+] in rat muscle: effect of temperature, lactic acid...
de Paoli FV, Overgaard K, Pedersen TH, Nielsen OB. Additive protective effects of the addition of lactic acid and adrenaline on excitability...
Noma A. ATP-regulated K+ channels in cardiac muscle. Nature 1983; 305: 147-148
Tanemoto M, Fujita A, Karachi Y. Inwardly-rectifying K+ channels in the heart. En: Sperelakis N, Kurachi Y, Terzic A, Cohen M (ed). Heart...
Crawford RM, Budas GR, Jovanovic S, Ranki HJ, Wilson TJ, Davies AM, Jovanovic A. M-LDH serve as a sarcolemmal Katp channel subunit essential...
Crawford RM, Ranki HJ, Botting CH, Budas GR, Jovanovic A. Creatine kinase is physically associated with the cardiac ATPsensitive K+ channel...
Davies NW. Modulation of ATP-sensitive Kl channels in skeletal muscle by intracellular protons. Nature 1990; 343: 375-377
Trabold O, Wagner S, Wicke C, Scheuenstuhl H, Hussain MZ, Rosen N, Seremetiev A, Becker HD, Hunt TK. Lactate and oxygen constitute a fundamental...
Sheikh AY, Gibson JJ, Rollins MD, Hopf HW, Hussain Z, Hunt TK. Effect of hyperoxia on vascular endothelial growth factor levels in a wound...
Green H, Golberg B. Collagen and cell protein synthesis by established mammalian fibroblast line. Nature 1964; 204: 347-349
Ghani QP, Wagner S y Hussain MZ. Role of ADP-ribosylation in wound repair. The contributions of Thomas K Hunt MD. Wound Repair Regen 2003;...
Mori K, Nakaya Y, Sakamoto S, Hayabuchi Y, Matsuoka S, Kuroda Y. Lactate-induced vascular relaxation in porcinecoronary arteries is mediated...
Mizock BA, Falk JL. Lactic acidosis in critical illness. Crit Care Med 1992; 20: 80-93.
James JH, Fang C-H, Schrantz SJ, Hasselgen P-O, Paul RJ, Fischer JE. Linkage of aerobic glycolisis to sodium-potassium transport in rat skeletal...
James JH, Luchette FA, McCarter FD, Fischer JE. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 1999a; 354:...
James JH, Wagner KR, King J-K, Leffler RE, Upputuri RK, Ambikaipakan B, Friend LA, Shelly DA, Paul RJ, Fischer JE. Stimulation of both aerobic...
Clausen T. Na+-K+ pump regulation and skeletal muscle contractility. Physiol Rev 2003; 83: 1269-1324
Schurr A, Payne RS, Miller JJ, Tseng MT, Rigor BM. Blockade of lactato transport exarcebates delayed neuronal damage in a rat model of cerebral...
Schurr A. Lactate, glucose and energy metabolism in the ischemic brain (Review). Int J Mol Med 2002; 10: 131-136
Payne RS, Tseng MT, Scurr A. The glucose paradox of cerebral ischemia: evidence for corticosterone involvement. Brain Res 2003; 971: 9-17.
Opciones
Mi Enfispo
S
elección
Opciones de artículo
Seleccionado
Opciones de compartir
Opciones de entorno
Sugerencia / Errata
Un proyecto de la Biblioteca de la Universidad Complutense de Madrid
Inicio
Buzón de atención
Localización y contacto
Ayuda
Accesibilidad
Aviso Legal
¿En qué podemos ayudarle?
×
Buscar en la ayuda
Buscar