Escoliosis asociada con fusiones costales Informe de dos casos

PABLO N. ORTIZ, PATRICIA GARRIDO, CARLOS LEGARRETA, GABRIEL ROSITTO, MARÍA ESCALADA, EDUARDO A CASTELLO y VICTOR ROSITTO

Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina

Caso clínico 1

Se trata de una niña de 5 años, sin antecedentes personales patológicos.

En el examen físico presentó un Adams torácico derecho, por lo que se solicitó un par radiográfico de rutina. Se observaron fusiones costales bilaterales a nivel T3-T4-T5 del lado izquierdo (cóncavo) y T5-T6 del lado derecho (convexo), además de escoliosis torácica derecha de 40° (Cobb) de T3 a T8 con ápice en T5-T6 (Fig. 1A y B).

Se realizó la resección subperióstica del bloque de fusión (Fig. 1C y D) y en el posquirúrgico temprano se colocó un corsé de Milwaukee.

Luego del seguimiento de 3 años y 6 meses la curva escoliótica de 40° disminuyó a 10°, con una corrección de un 75% (Fig. 1E y F).

Caso clínico 2

Un niño de 1 año y 6 meses es llevado a la consulta por la observación, en radiografías pedidas por otra causa, de fusiones costales unilaterales a nivel T6-T7 del lado izquierdo (cóncavo), además de una escoliosis torácica derecha de 20° (Cobb) de T5 a T8 con ápice en T6 (Fig. 1G). En el examen físico presentó un Adams torácico derecho.

Se realizó la resección subperióstica del bloque de fusión a los 4 años (Fig. 1H-I) y en el posquirúrgico temprano se colocó un corsé de Milwaukee.

Luego del seguimiento de 8 años y 5 meses la curva escoliótica de 20° disminuyó a 0°, con una corrección de un 100% (Fig. 1J).

Recibido el 14-11-2007. Aceptado luego de la evaluación el 16-9-2008. Correspondencia:

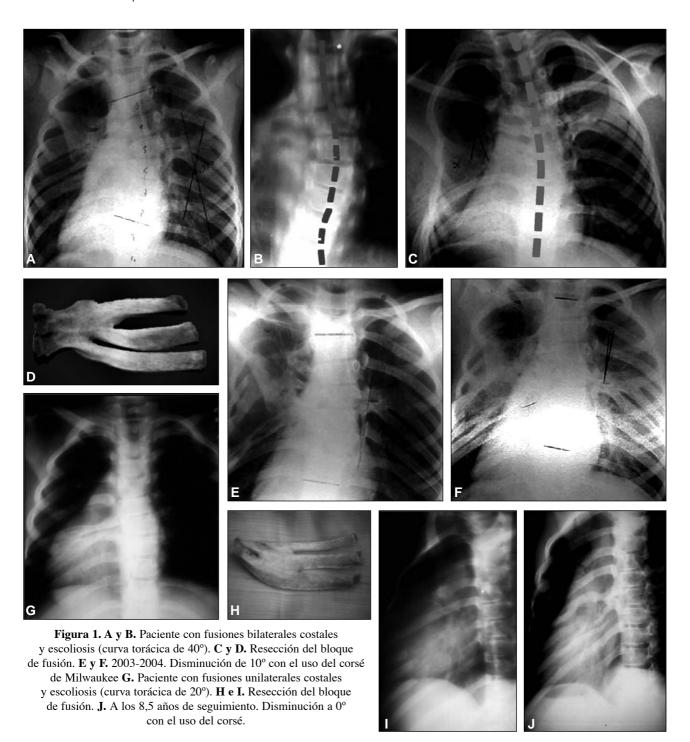
Dr. PABLO N. ORTIZ nn@nn.com

Discusión

En este informe de dos casos las malformaciones costales (MC) determinan curvas escolióticas progresivas, cuyo tratamiento es un problema difícil y de resolución compleja.^{8,13}

Existe escasa bibliografía en la que se analizan las características de las MC y las curvas escolióticas progresivas asociadas. Se está tratando de comprender el comportamiento de esta patología para poder resolver precozmente los problemas funcionales y estructurales que ocurren durante el crecimiento del niño.

La mayor progresión de las curvas escolióticas asociadas con fusiones o sinostosis costales se observó cuando estas malformaciones se encontraron en el tercio inferior del tórax (Shahcheraghi y cols.).²¹


Las fusiones costales congénitas suelen asociarse con malformaciones vertebrales complejas, pero en raras ocasiones se presentan aisladas y pueden provocar escoliosis de grado variable.⁷

Existe consenso en la mayor parte de la literatura especializada mundial en atribuir la escoliosis congénita principalmente a la anormalidad vertebral y no a las malformaciones costales, pero en algunos estudios se ha demostrado que estas últimas actuarían como una barra no segmentada, con gran capacidad de exacerbar la deformidad física por promover la curvatura vertebral en dirección al defecto costal, como se presenta en estos dos pacientes.

Damsin y cols. 7 observaron escoliosis con fusión costal y ausencia de anomalía vertebral. Estos autores encontraron una alternativa eficaz para la resolución de la progresión escoliótica con la resección del bloque costal únicamente, como la utilizada por nuestro equipo, y obtuvieron buenos resultados.

Pueden utilizarse diferentes opciones de tratamiento en estas malformaciones complejas, con el objetivo de evitar el progreso de la deformidad y la exacerbación de los problemas respiratorios o cardiovasculares.

Algunos autores¹⁻¹⁹ incluyen entre las posibilidades de tratamiento la realización temprana (considerado durante

mucho tiempo el criterio de referencia [gold standard]) de una artrodesis vertebral posterior, una epifisiodesis convexa anterior o una combinación de ambas. Otros autores 19,20 recomiendan asociarla con resecciones de los bloques de fusiones costales en el lado cóncavo de la curva. Una de las conclusiones de Owange-Iraka y cols. 17 es que el mayor daño o deterioro de la función pulmonar se presenta entre la asociación de la escoliosis congénita y la patología costal, por lo cual Pehrsson y cols. 18 aconsejan la cirugía precoz, ya que el crecimiento alveolar se

extendería hasta los 8 años y podría mejorar la función respiratoria.

Otra posibilidad quirúrgica es la utilización de la prótesis costal vertical expansible, con la cual Campbell y cols., ⁴ en un trabajo que incluyó a 18 pacientes, lograron un incremento significativo en el largo de la columna dorsal aumentando en forma tridimensional el volumen torácico, pero no pudieron asegurar que haya habido una mejoría significativa de la función pulmonar luego de la cirugía; además, los costos fueron mucho más elevados. ^{5,12}

Pensamos que esta compleja patología (cuyas características todavía no se conocen muy bien, como tampoco el comportamiento de las anomalías asociadas) debería

encararse en forma combinada y que es posible llegar a su curación si se actúa sobre las anomalías costales (resección) y sobre la escoliosis (corsé).

Bibliografía

- Andrew T, Piggott H. Growth arrest for progressive scoliosis. Combined anterior and posterior fusion of convexity. JBJS Br. 1985;67:193-7.
- 2. Arlet V, Odent T, Aebi M. Congenital scoliosis. Eur. Spine J. 2003;12:456-63.
- 3. Bedouelle J, Guillaumat M. Malformation de la paroi thoracique. Encycl Méd Chir. 1994;14-528:8-9.
- Campbell RM, Melvin D, Smith MD, Hell-Vocke AK. Expansion thoracoplasty: The surgical technique of opening-wedge thoracostomys. JBJS Am. 2003;85:409-20.
- 5. Campbell RM, Smith MD, Mayes TC, Mangos J, Wiley-Courand DB, et al. *The* characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. *JBJS Am.* 2003;85:399-409.
- Coury C, Delaporte J. Les anomalies congénitales des cotes. Formes anatomo-radiologiques et incidences pratiques. Sem Hop Paris. 1954;30:2856-81.
- 7. Damsin JP, Cazeau C, Carlioz H. Scoliosis and fused ribs. A case report. Spine 1997;22:1030-32.
- 8. **Davies G, Reid L.** Effect of scoliosis on growth of alveoli and pulmonary arteries and the right ventricle. *Arch Dis Child*. 1971;46:623-32.
- 9. Erol B, Kusumi K, Lou J, Dormans JP. Etiology of congenital scoliosis. *University of Pennsylvania Orthopaedic Journal* 2002;15:37-42.
- 10. Hefti F. Congenital anomalies of the spine. Orthopade. 2002;31:34-43.
- 11. Jaskwich D, Ali MR, Patel CH, Green DW. Congenital scoliosis. Curr Opin Pediatr. 2002;12:61-66.
- 12. Lewandrowski K, Campbell RM Jr., Emans JB. Vertical rib expansion for thoracic insufficiency. Indications and technique. *Orthopaedic Journal at Harvard Medical School*. 2001;3: 65-73.
- 13. Mc Master MJ. Congenital deformities of the spine. J R Coll. Surg. 2002;47:475-80.
- 14. **Mc Master MJ.** Congenital scoliosis caused by unilateral failure of vertebral segmentation with contralateral hemivertebrae. *Spine* 1998;23:998-1005.
- 15. Mc Master MJ. Congenital scoliosis. The pediatric spine: principles and practice. New York; 1994.
- 16. Mohanty S, Kumar N. Patterns of presentation of congenital scoliosis. J Orthop Surg. 2000;8:33-37.
- 17. **Owange-Iraka JW, Harrison A, Warner JO.** Lung function in congenital and idiopathic scoliosis. *Eur J Pediatr*. 1984;142:198-200.
- 18. **Pehrsson K, Nachemson A, Olofson J, Strom K, Larsson S.** Respiratory failure in scoliosis and other thoracic deformities. A survey of patients with home oxygen or ventilator therapy in Sweden. *Spine* 1992;17: 714-18.
- 19. Winter RB, Moe JH, Eilers VE. Congenital scoliosis. A study of 234 patients treated and untreated. JBJS Am. 1968;50:1-47.
- 20. Winter RB. Congenital deformities of the spine. *Thieme Stratton*. 1983;11-17.
- 21. Shahcheraghi GH, Hobbi MH. Patterns and progression in congenital scoliosis. Pediatr. Orthop 1999;19:766-75.